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Abstract. The subject of this work is the parametric inference problem, i.e. how to infer from data
on the parameters of the data likelihood of a random process whose parametric form is known a
priori. The assumption that Bayes’ theorem has to be used to add new data samples reduces the
problem to the question of how to specify a prior before having seen any data. For this subproblem
three theorems are stated. The first one is that Jaynes’ Maximum Entropy Principle requires at least
a constraint on the expected data likelihood entropy, which gives entropic priors without the need of
further axioms. Second I show that maximizing Shannon entropy under an expected data likelihood
entropy constraint is equivalent to maximizing relative entropy and therefore reparametrization
invariant for continuous-valued data likelihoods. Third, I propose that in the state of absolute
ignorance of the data likelihood entropy, one should choose the hyperparameter α of an entropic
prior such that the change of expected data likelihood entropy is maximized. Among other beautiful
properties, this principle is equivalent to the maximization of the mean-squared entropy error
and invariant against any reparametrizations of the data likelihood. Altogether we get a Bayesian
inference procedure that incorporates special prior knowledge if available but has also a sound
solution if not, and leaves no hyperparameters unspecified.

Keywords: parametric inference, Bayesian inference, Maximum Entropy Principle, entropic
prior, reparametrization invariance, non-informative prior, least-informative prior, expected entropy
change maximization, stable inference
PACS: 02.50.Cw, 02.50.Tt, 05.20.-y

1. THE PARAMETRIC INFERENCE PROBLEM

If we know the parametric form of the data likelihood function L(x|θ) of a random
process with random variable(s) X and have observed n data samples {x1, ...,xn} = xn ∈
Xn, then what can we say about the parameters θ after having seen the data?

2. FROM BAYES TO ENTROPIC PRIORS

Let’s assume that the right way to update our degrees of belief in some θ ’s being the real
parameters θ∗ from new data samples is Bayes’ theorem. Emphasizing its quality as an
"update rule" this theorem can be stated as

P(θ |xn) ∝ P(θ |xn1)L(xn2 |θ) (1)



with n1 + n2 = n and n1,n2 ≥ 0. Then, all our knowledge (and uncertainty) about the
parameters θ after having seen data xn is represented by the posterior density P(θ |xn).

Adopting this point, the parametric inference problem reduces to the question of how
to determine a prior P(θ)≡P(θ |x0) expressing the state of mind of the "reasoner" before
having seen any data. In order to avoid confusions with priors that already incorporate
knowledge derived from data, in the following I shall call these priors "first priors".

Note that a first prior might contain real information, although it represents a state of
mind before having seen any data. Such information could stem from knowledge about
the design of the random experiment, like that we know that a die is loaded and has its
mass center near the six face. If we don’t have such prior knowledge, a first prior will be
equivalent to what is most often called a "non-informative" or "least-informative" prior.

The problem of how to assign priors dates back at least to the work of Laplace and
Bernoulli [1] and is still an active research area. Founded in 1957 by Edwin T. Jaynes,
the approach that has probably received most attention is the Principle of Maximum
Entropy [2] [3] [4] [5]. Let’s restrict the discussion in this section to the case of discrete-
valued data likelihoods; then the ME principle claims that among all possible densities
P(θ) satisfying a couple of constraints given as expectation values (and a normalization
constraint), we should choose the one that maximizes the Shannon entropy

SP = −
∫

Θ
P(θ) lnP(θ)dθ (2)

Note that doubts on the uniqueness of the entropy measure raised e.g. by Uffink [6]
have been countered by Caticha and Giffin [7].

A particular proposal for least-informative priors are the so-called "entropic priors"
[8] [9] [10] [11] [12] [13], that have first been derived by Skilling [8] from the axioms of
Maximum Entropy and an additional "quantification" argument. Entropic priors Pα(θ)≡
P(θ) owe their name to the shape of their density

Pα(θ) ∝ eαSL(θ ) (3)

where
SL(θ) = −

∫
X

L(x|θ) lnL(x|θ)dx (4)

is the entropy of the data likelihood function with parameters θ .
In 2004, Caticha and Preuss recognized that in order to solve problems with repeatable

experiments, entropic priors need a constraint on the expected data likelihood entropy
〈SL〉 (see [12], page 5), which is defined as

〈SL〉 =
∫

Θ
SL(θ)P(θ)dθ (5)

However, application of Jaynes’ Maximum Entropy Principle with a constraint like
〈SL〉 = S̄ always gives an entropic prior! Thus, such a constraint has the same power as
Skilling’s quantification argument, and defines the assumption made in entropic priors.

Theorem 1 (Entropic Priors) Application of the Maximum Entropy Principle requires
at least a constraint on the expected data likelihood entropy like 〈SL〉 = S̄. The result is



an entropic prior. The information contained in a "pure" entropic prior is an expectation
about the data likelihood entropy and nothing else.1

3. CONTINUOUS-VALUED DATA LIKELIHOODS

It is a well-known fact that for continuous-valued data likelihoods, equation 2 is
not invariant under reparametrizations of the data likelihood; consequently, mere
reparametrizations might yield different inference results. To overcome this problem,
we have to introduce a measure m(θ) in the log that transforms as P(θ) does. This gives
the relative entropy:2

SP|m = −
∫

Θ
P(θ) ln

P(θ)
m(θ)

dθ (6)

Note that reparametrization invariance would be guaranteed by any m(θ), and that
the ME principle doesn’t give us a hint which one to use. However, we can formulate a
couple of desirable properties:

• Jaynes’ Argument: "Except for a constant factor, the measure m(θ) is also the
prior describing ’complete ignorance’ of θ ." (Jaynes in [14], page 377)

• Axiomatic Consistency: Even for continuous-valued data likelihoods, the resulting
prior still has to obey the restrictions imposed by Skillings axioms.

• Limit Argument: For continuous-valued data likelihoods that can be derived as
some limit of a discrete-valued likelihood (e.g. hypergeometric and binomial), the
following two solutions should be equivalent: First, solving the variational problem
with the simple Shannon-entropy for the discrete-valued data likelihood and getting
the limit of the solution; and second, solving the variational problem with the
relative entropy for the continuous-valued likelihood.

First proposed by Rodriguez [9], a popular approach for entropic priors is that we
should maximize the relative entropy under a normalization and an expected data likeli-
hood entropy constraint, giving the solution

Pα(θ) ∝ m(θ)eαSL(θ ) (7)

where
m(θ) ∝

√
detgi j(θ) (8)

is Jeffreys’ prior which is based on the Fisher information matrix.
It is easy to see that the solution proposed by equations 7 and 8 doesn’t satisfy the first

two demands defined above. But did we already put in all the information we have to find

1 I call an entropic prior "pure" if there are no more constraints than one on the expected data likelihood
entropy and one for the normalization. Further constraints may lead to more complex expressions than
equation 3; on the other hand, as we will see in section 5.1, the expressions may simplify as well if the
data likelihood entropy takes on a logarithmic form.
2 Relative entropy is often written with an opposite sign. I follow the notation of [12].



the right entropy functional and/or m(θ)? I think we can do better than just demanding
reparametrization invariance. What we really want is: Maximizing our entropy functional
under a normalization constraint and an expected data likelihood entropy constraint
should give the same result, no matter which parametrization we choose. Let’s have a
look at the Lagrangian describing this using the simple Shannon entropy:

L = (−
∫

Θ
P(θ) lnP(θ)dθ)+α(−

∫
Θ

P(θ)
∫

X
L(x|θ) lnL(x|θ)dxdθ − S̄)

+ λ (
∫

Θ
P(θ)dθ −1)

= (−
∫

Θ
P(θ)(lnP(θ)+α

∫
X

L(x|θ) lnL(x|θ)dx)dθ)−α S̄+λ (
∫

Θ
P(θ)dθ −1)

= (−
∫

Θ
P(θ)ln

P(θ)
mα(θ)

dθ )+λ (
∫

Θ
P(θ)dθ −1)−α S̄ (9)

where
mα(θ) ∝ e−α

∫
X L(x|θ ) lnL(x|θ )dx ≡ eαSL(θ ) (10)

Since the α S̄-term cancels when expression 9 is maximized, we see:

Theorem 2 (Reparametrization Invariance) Maximizing the simple Shannon entropy
under an expected data likelihood entropy constraint is equivalent to maximizing
relative entropy with the underlying measure m(θ) given by mα(θ), and therefore
reparametrization invariant. Consequently, both the inference procedure and the re-
sulting prior Pα(θ) are exactly the same for discrete- and continuous-valued data
likelihoods.

The argument above shows in my opinion that it is a tautology to have both an m(θ)
given by equation 8 and the entropic term as in equation 7. One of the two is enough!
Nevertheless, my personal belief is that this solution is only slightly wrong, because
Jeffreys’ prior is quite similar to the entropic term, and therefore the two terms are
almost linear dependent conditions in the solution of the variational problem.3

4. THE HYPERPARAMETER α

In this section we are going to see how we can deal with the hyperparameter α still
present in the "generic" entropic priors derived so far. Note that like the internal energy of
an ideal gas, the expected data likelihood entropy 〈SL〉 of an entropic prior is a function
of (inverse) temperature and nothing else, i.e. 〈SL〉 ≡ 〈SL〉(α) (see figure 1 for a typical
example). Therefore, if we have a concrete expectation like 〈SL〉 = S̄ = 0.35, then we
just pick the α that realizes the expected 〈SL〉= S̄, and our prior is fixed, i.e. contains no
more variables than the θs.

3 Actually, I think that Jeffreys’ prior is a second-order approximation to the entropic prior, the small error
being caused by merely asymptotically valid expansions, possibly those in [15], page 13, and [16], page
4.



FIGURE 1. Expected entropy as a function of α given the entropic prior for 2-class discrete data

The more difficult case is when we have no idea at all about S̄, which is when first
priors become equivalent to least-informative priors. How shall we deal with α? The
most popular approach currently is to treat α as a nuisance parameter and eliminate it
via outmarginalization [12] [17] [18]. Nevertheless, I see a couple of problems with this:

• Technical Problems: The outmarginalization procedure requires a prior P(α). In
my eyes, this just means that the problem of determining the least-informative prior
is moved to another, less "visible" place. Furthermore, we have even less intuition
on how to determine a prior on a hyperparameter than on θ . Consequently, the
attempts to specify P(α) I’ve seen so far don’t convince me very much: Strauss,
Wolf and Wolpert (see [17], page 115) simply assumed a "reasonable" flat prior,
which is obviously not a well-founded argument. Preuss and Caticha [12] advocate
for an entropic prior on α , but then they get another hyperparameter (e.g. β ) they
have to deal with. Rodriguez [19] proposed an infinite progression of entropic
priors, but how can we compute this?

• Axiomatic Consistency: The result of an outmarginalization will usually not match
anymore the entropic form required by Skilling’s axioms.

• Epistemic Argument: We are doing Bayesian inference, because we are interested
in the uncertainties of all possible θs being the real θ ∗s, based upon the state of
knowledge we are in after having seen certain data. But we are not interested at
all in the distribution of a hyperparameter. Therefore in this case I’m missing the
motivation for a Bayesian treatment.



Which alternatives do we have? Skilling advanced the view that α could not be fixed
a priori. (see [8], page 51). Nevertheless, my opinion is that the desiderata formulated
above can only be satisfied by a point estimate, and that though no particular value is
correct for any possible data likelihood, there might exist a rule to determine α for a
given data likelihood.

In order to progress into that direction, let’s again have a look at figure 1 and recall
that any choice of α corresponds to a particular expectation 〈SL〉. If we don’t have a
clue about the real value of the data likelihood entropy, we would surely not want to
expect a zero ("the die always gives the same number") or maximal value ("the die is
fair"), which would be examples of great prior knowledge. But which of the "moderate"
α-values makes most sense, and what is this sense? My opinion is:

Theorem 3 (Least-Informative Priors) If we are implicitly making an assumption on
the data likelihood entropy anyway, although we don’t know which one to expect, the
least biased choice is the α∗ that maximizes the assumption error, i.e. the entropy
variance. This is the exact meaning of "least-informativity".

This choice has amazing properties, for example the following equivalence:

〈S2
L〉(α)−〈SL〉(α)2 =

∫
Θ SL(θ)2eαSL(θ )dθ∫

Θ eαSL(θ )dθ
− (

∫
Θ SL(θ)eαSL(θ )dθ∫

Θ eαSL(θ )dθ
)

2

=
( ∂

∂α
∫

Θ SL(θ)eαSL(θ )dθ)(
∫

Θ eαSL(θ )dθ )− (
∫

Θ SL(θ)eαSL(θ )dθ )( ∂
∂α

∫
Θ eαSL(θ )dθ)

(
∫

Θ eαSL(θ )dθ)2

=
∂

∂α

∫
Θ SL(θ)eαSL(θ )dθ∫

Θ eαSL(θ )dθ
=

∂
∂α

〈SL〉(α) (11)

Thus, choosing the α∗ that maximizes the data likelihood entropy variance of an entropic
prior is equivalent to choosing the turning point of 〈SL〉(α),

α∗ = arg max
{α}

(
∂ 〈SL〉(α)

∂α
) (12)

Therefore, theorem 3 could as well be called a "Maximum Entropy Change Principle".
Further interesting properties of this principle are

• It is absolutely invariant against reparametrizations of the probabilistic model,
because the principle itself is based solely on the data likelihood function. If the
likelihood function is reparametrized, the functional form of the condition for the
turning point of 〈SL〉(α) changes correspondingly so that the resulting α ∗ always
stays the same.

• It realizes a stable inference solution as proposed by Tikochinsky [20]: The α to
choose is the one that maximizes the change in expected entropy; the other way
round, it is the choice where a small error in our assumption (say, the expected
entropy differs from the real one) has the least effect on the shape of the result-
ing density and estimators derived from it. Since the quantity whose stability is
guaranteed is an entropy, we could call that solution "entropy-stable".



• That the proposed choice maximizes the mean-squared entropy error is in agree-
ment with [21] that the quadratic loss is the unique loss function consistent with
the entropy measure.

• The principle has many meaningful transformations; for example it may be rewrit-
ten as the demand to set the expected entropy skew to zero.

Note last not least that maximization of expected entropy change has been proposed in
nonequilibrium thermodynamics by Q.A. Wang [22] [23] before, and that we could state
the choice of α as well in a Bayesian style with the prior P(α) being a delta function.

5. APPLICATION OF THE MAXIMUM ENTROPY CHANGE
PRINCIPLE

I applied the proposed rule to the normal data likelihood function as well as to data
likelihoods for discrete-valued random processes. Computations usually consist of two
components: First an approximation of the expected data likelihood entropy and/or some
higher central moments for a given α , and second a kind of Newton-step procedure to
find the α∗ where the entropy change is maximized.

5.1. Normal data

For a normal data likelihood N (x|µ,σ) ≡ L(x|θ) with

N (x|µ,σ) =
1√

2πσ
e−

(x−µ)2

2σ2 (13)

the data likelihood entropy SN (µ,σ) ≡ SL(θ) is given by

SN (µ,σ) = ln
√

2πσ (14)

The entropic prior with hyperparameter α therefore has the form

Pα(µ,σ) ∝ eα ln
√

2πσ (15)

Though 〈SN 〉(α) gives ∞, its derivative towards α can be computed. Maximizing the
change of 〈SN 〉(α) with respect to α gives α∗ = −1 and with this, the entropic prior
resolves to

P(µ,σ) ∝
1
σ

(16)

This is the result preferred by Jeffreys although it contradicts his "general rule" (see
[24], page 1345).



5.2. Discrete random processes

Now we consider random processes that can only take on a finite number of values X ∈
{X1, ...,Xk} with probabilities p1, ..., pk,∑k

i=1 pi = 1. A single random experiment with
such a likelihood function is called a Bernoulli trial for k = 2, and a Bernoulli scheme
for any k ≥ 2; I will refer to the corresponding distributions in general as Bernoulli
likelihoods Bk. If we combine several Bernoulli experiments ignoring their order, we
get binomial or multinomial data likelihoods. Inference from such data likelihoods has
turned out to be a tough problem [25] [26], so let’s see what the new approach delivers:

The entropy of a Bernoulli likelihood is given by the standard Shannon entropy

SBk
(p1, ..., pk−1) = −

k

∑
i=1

pi ln pi (17)

The entropic prior with hyperparameter α is

Pα(p1, ..., pk−1) ∝ eαSBk
(p1,...,pk−1) (18)

and the expected data likelihood entropy

〈SBk
〉(α) =

∫
...

∫
P

SBk
(p1, ..., pk−1)Pα(p1, ..., pk−1)dp (19)

where we have to integrate over the (k−1)-dimensional simplex
P = {(p1, ..., pk−1) | p1 = 0..1, p2 = 0..(1− p1), ..., pk−1 = 0..(1− p1− ...− pk−2)}.

The required computations are pretty time-consuming, because the expected entropy
integrals have the tendency to converge very slowly. Already for k = 3, it was quite
necessary to use special numerical integration techniques. The best method I applied is
an Adaptive Quadrature algorithm [27] using Gauss-Legendre polynomials and some
analytical simplifications. The results are given in table 1.

TABLE 1. α∗-choice for the entropic
prior for k-class discrete data

k α∗ 〈SBk〉(α∗)
2 -3.118356848554... 0.3685467...

3 -4.772026959... 0.5676038...

4 -6.0437688... 0.7127738...

5 -7.104524... 0.8308972...

6 -8.03223... 0.932265...

7 -8.9216... 1.01628...

The entropic prior for 2-class discrete data resembles much Jeffreys’ prior PJ(θ) ∝
θ−1/2(1−θ)−1/2 but is proper. In fact, we can develop the entropic prior into a power
series around θ0 = 1/2 to which Jeffreys’ prior is a second order approximation.

As indicated by table 1, the α∗-values keep the expected data likelihood entropies
near to lnk

2 for any k.



6. FINAL REMARKS

The major points of this work are expressed in the three theorems. The first claims that
Jaynes’ Maximum Entropy Principle requires necessarily a constraint 〈SL〉 = S̄ on the
expected entropy of the considered data likelihood L(x|θ). Practically, such a constraint
means that we have an idea about the complexity of the random problem. If we apply
the ME principle with such a constraint, we will always get an entropic prior Pα(θ).

The second theorem shows that maximization of Shannon entropy under an expected
data likelihood entropy constraint is equivalent to maximizing relative entropy without
such a constraint, but with a particular choice of the underlying measure m(θ). There-
fore, reparametrization invariance is guaranteed for continuous-valued data likelihoods
by exactly the same formalism that was derived for discrete-valued data likelihoods.

The third and last theorem is a proposal for priors in the absence of any prior knowl-
edge. It claims that in this case, we should choose the hyperparameter α such that the
data likelihood entropy variance or equivalently, the change of expected data likeli-
hood entropy against α is maximized. Among other interesting properties, this prin-
ciple is completely invariant against reparametrizations of the data likelihood and could
be called an entropy-stable inference solution. Furthermore, the principle shows us that
Jose Bernardo’s famous sentence "Non-informative priors do not exist" [28] is abso-
lutely correct: Any entropic prior implies an assumption on the data likelihood entropy,
and if we don’t know which entropy to expect, all we can do is to minimize our assump-
tion error by maximizing the entropy variance.

Putting all pieces together, we get a "universal" solution procedure (in the sense that
it is applicable to any data likelihoods) for the parametric inference problem that leaves
no hyperparameters unspecified. This procedure has the following components:

• You are given the parametric form of the data likelihood of a random problem.
• Determine the "first prior" using the ME principle with a constraint on the expected

data likelihood entropy. The result is an entropic prior with hyperparameter α . If
you really have an expectation about the data likelihood entropy, choose the α that
realizes it; else take the value that maximizes the data likelihood entropy variance
(or equivalently, the change of data likelihood entropy).

• Use Bayes’ theorem to update your degrees of belief from the first prior with data.
• Compute the desired parameter estimates from the posterior.

Concerning statistical inference, I think that the whole of the theory developed here
is very self-consistent, explains some things that have not been explained yet, and
gives encouraging results. An aspect I want to emphasize is that it prefers special
("subjective") knowledge if present. In fact, if we understand the ME principle as a mere
tool to cast prior knowledge into a nicely shaped prior, then the approach presented here
could help to close the gap between the positions of "objectivists" and "subjectivists".
I’m now looking forward to use the results of this paper as a building block to tackle
more complex problems, like non-parametric inference for high-dimensional real-world
problems. That’s where the right choice of priors will have the biggest impact.

Concerning physics, like Wang I believe that the Maximum Entropy Change Principle
is a kind of natural law, and I wonder if there are further problems and theories to



which it might be applicable. Some potential candidates are already suggested by the
near relationship between inference and thermodynamics through the ME principle, for
example the problems of temperature fluctuations [10] [29] [30] or a thermodynamical
uncertainty relation [31] [32]. Other interesting relationships are those with black hole
thermodynamics [33] [34] and with the theories that can be derived by application of the
ME principle with exotic probabilities [35].
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